arXiv Analytics

Sign in

arXiv:0710.1989 [math.FA]AbstractReferencesReviewsResources

Banach algebras of pseudodifferential operators and their almost diagonalization

Karlheinz Gröchenig, Ziemowit Rzeszotnik

Published 2007-10-10Version 1

We define new symbol classes for pseudodifferntial operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebra over a lattice we associate a symbol class. Then every operator with such a symbol is almost diagonal with respect to special wave packets (coherent states or Gabor frames), and the rate of almost diagonalization is described precisely by the underlying convolution algebra. Furthermore, the corresponding class of pseudodifferential operators is a Banach algebra of bounded operators on $L^2 $. If a version of Wiener's lemma holds for the underlying convolution algebra, then the algebra of pseudodifferential operators is closed under inversion. The theory contains as a special case the fundamental results about Sj\"ostrand's class and yields a new proof of a theorem of Beals about the H\"ormander class of order 0.

Comments: 28 pages
Journal: Ann. Inst. Fourier. 58(7) (2008), 2279-2314
Categories: math.FA, math.OA
Subjects: 42C40, 35S05
Related articles: Most relevant | Search more
arXiv:math/0604294 [math.FA] (Published 2006-04-12)
Pseudodifferential Operators on Locally Compact Abelian Groups and Sjoestrand's Symbol Class
arXiv:1703.00882 [math.FA] (Published 2017-03-02)
Extending representations of Banach algebras to their biduals
arXiv:0904.4102 [math.FA] (Published 2009-04-27)
Approximate Identity and Arens Regularity of Some Banach Algebras