arXiv:0710.1921 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Spin Order in Paired Quantum Hall States
Ivailo Dimov, Bertrand I. Halperin, Chetan Nayak
Published 2007-10-10Version 1
We consider quantum Hall states at even-denominator filling fractions, especially $\nu=5/2$, in the limit of small Zeeman energy. Assuming that a paired quantum Hall state forms, we study spin ordering and its interplay with pairing. We give numerical evidence that at $\nu = 5/2$ an incompressible ground state will exhibit spontaneous ferromagnetism. The Ginzburg-Landau theory for the spin degrees of freedom of paired Hall states is a perturbed CP$^2$ model. We compute the coefficients in the Ginzburg-Landau theory by a BCS-Stoner mean field theory for coexisting order parameters, and show that even if repulsion is smaller than that required for a Stoner instability, ferromagnetic fluctuations can induce a partially or fully polarized superconducting state.