arXiv:0708.1711 [math.RT]AbstractReferencesReviewsResources
Generators of simple Lie algebras in arbitrary characteristics
Published 2007-08-13, updated 2008-07-14Version 2
In this paper we study the minimal number of generators for simple Lie algebras in characteristic 0 or p > 3. We show that any such algebra can be generated by 2 elements. We also examine the 'one and a half generation' property, i.e. when every non-zero element can be completed to a generating pair. We show that classical simple algebras have this property, and that the only simple Cartan type algebras of type W which have this property are the Zassenhaus algebras.
Comments: 26 pages, final version, to appear in Math. Z. Main improvements and corrections in Section 4.3
Keywords: simple lie algebras, arbitrary characteristics, generators, simple cartan type algebras, classical simple algebras
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0806.4496 [math.RT] (Published 2008-06-27)
Generators of simple Lie algebras II
arXiv:1711.00638 [math.RT] (Published 2017-11-02)
On gradings modulo 2 of simple Lie algebras in characteristic 2
arXiv:2303.15927 [math.RT] (Published 2023-03-28)
Exploring Lie theory with GAP