arXiv:0707.4256 [math.CO]AbstractReferencesReviewsResources
Rubbling and Optimal Rubbling of Graphs
Christopher Belford, Nandor Sieben
Published 2007-07-28Version 1
A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move one pebble is removed at vertices v and w adjacent to a vertex u and an extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The rubbling number of a graph is the smallest number m needed to guarantee that any vertex is reachable from any pebble distribution of m pebbles. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We determine the rubbling and optimal rubbling number of some families of graphs including cycles.