arXiv:0707.3772 [math-ph]AbstractReferencesReviewsResources
Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions
Francisco J. Herranz, Angel Ballesteros
Published 2007-07-25Version 1
The Lie-Poisson algebra so(N+1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the ND spherical, Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N-3 functionally independent constants of the motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky-Winternitz system to the above six spaces, while the latter is a generalization of the Kepler-Coulomb potential, for which the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of the motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).