arXiv:0707.1963 [cond-mat.dis-nn]AbstractReferencesReviewsResources
Kauffman Boolean model in undirected scale free networks
Piotr Fronczak, Agata Fronczak, Janusz A. Holyst
Published 2007-07-13, updated 2007-07-24Version 2
We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)\sim k^{-\gamma}$. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for $3<\gamma < 3.5$. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for $\gamma<3$, the position of the critical line in Kauffman model seems to be an important exception from the rule. Second, since gene regulatory networks are characterized by scale-free topology with $\gamma<3$, the observation that in finite-size networks the mentioned transition moves towards smaller $\gamma$ is an argument for Kauffman model as a good starting point to model real systems. We also explain that the unattainability of the critical line in numerical simulations of classical random graphs is due to percolation phenomena.