arXiv Analytics

Sign in

arXiv:0707.1462 [math.PR]AbstractReferencesReviewsResources

Non-Uniqueness of Gibbs measures relative to Brownian motion

Volker Betz, Olaf Wittich

Published 2007-07-10, updated 2010-07-15Version 2

We consider Gibbs measures relative to Brownian motion of Feynman-Kac type, with single site potential V. We show that for a large class of V, including the Coulomb potential, there exist infinitely many infinite volume Gibbs measures.

Comments: This paper has been withdrawn by the author due to a fatal error in Theorem 3.5 (the main theorem, unfortunately)
Categories: math.PR, math-ph, math.MP
Subjects: 82B31, 60J50
Related articles: Most relevant | Search more
arXiv:math/0308193 [math.PR] (Published 2003-08-20)
A central limit theorem for Gibbs measures relative to Brownian motion
arXiv:math/0004131 [math.PR] (Published 2000-04-20, updated 2003-11-30)
Statistical Properties of Convex Minorants of Random Walks and Brownian Motions
arXiv:0802.1152 [math.PR] (Published 2008-02-08, updated 2009-12-09)
Hiding a drift