arXiv Analytics

Sign in

arXiv:0705.1245 [math.RT]AbstractReferencesReviewsResources

Microlocalization of rational Cherednik algebras

Masaki Kashiwara, Raphael Rouquier

Published 2007-05-09, updated 2007-10-08Version 2

We construct a microlocalization of the rational Cherednik algebras $H$ of type $S_n$. This is achieved by a quantization of the Hilbert scheme $\Hilb^n\C^2$ of $n$ points in $\C^2$. We then prove the equivalence of the category of $H$-modules and the one of modules over its microlocalization under certain conditions on the parameter.

Comments: 36 pages, minor corrections, to appear in Duke Math. Journal
Categories: math.RT, math.AG, math.QA
Subjects: 16G89, 53D55, 14C05
Related articles: Most relevant | Search more
arXiv:1212.6487 [math.RT] (Published 2012-12-28)
Hall-Littlewood polynomials and vector bundles on the Hilbert scheme
arXiv:math/0504600 [math.RT] (Published 2005-04-29, updated 2005-04-30)
Representations of rational Cherednik algebras
arXiv:math/0312474 [math.RT] (Published 2003-12-29, updated 2006-03-28)
Cherednik algebras and Hilbert schemes in characteristic p