arXiv:0704.2002 [physics.flu-dyn]AbstractReferencesReviewsResources
Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
A. A. Schekochihin, A. B. Iskakov, S. C. Cowley, J. C. McWilliams, M. R. E. Proctor, T. A. Yousef
Published 2007-04-16Version 1
This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 1<Re<6700. In the limit Pm<<1, Rm_c is ~3 times larger than for Pm>1. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit Re>>Rm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1<Rm<Rm_c, the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k^{-1} spectrum above the resistive scale is examined. At low Rm<1, the induced fluctuations are well described by the quasistatic approximation; the k^{-11/3} spectrum is confirmed for the first time in direct numerical simulations.