arXiv Analytics

Sign in

Search ResultsShowing 1-7 of 7

Sort by
  1. arXiv:1912.02905 (Published 2019-12-05)

    The Sixteenth Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Romina Ahumada et al.
    Comments: DR16 date: Monday Dec 9th 2019. This is the alphabetical order SDSS-IV collaboration data release paper. 21 pages, 6 figures, submitted to ApJS

    This paper documents the sixteenth data release (DR16) from the Sloan Digital Sky Surveys; the fourth and penultimate from the fourth phase (SDSS-IV). This will be the first release of data from the Southern Hemisphere Survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release to contain data (spectra) from the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes the last data from the Time Domain Spectroscopic Survey (TDSS) and new data from the SPectroscopic IDentification of ERosita Survey (SPIDERS) programs, both of which co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).

  2. arXiv:1607.04678 (Published 2016-07-15)

    The Correlation Between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe

    Jeremy L. Tinker et al.

    We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar masses of Chen etal (2012) clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA masses, we measure the large-scale bias as a function of Mgal for galaxies with logMgal>=11.4, correcting for incompleteness at the low-mass end of our measurements. Using the abundance-matching ansatz to connect dark matter halo mass to stellar mass, we construct theoretical models of b(Mgal) that match the same stellar mass function but have different amounts of scatter in stellar mass at fixed halo mass, sigma_logM. Using this approach, we find sigma_logM=0.18^{+0.01}_{-0.02}. This value includes both intrinsic scatter as well as random errors in the stellar masses. To partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an upper limit to the intrinsic scatter of 0.16 dex.

  3. arXiv:1603.08626 (Published 2016-03-29)

    The Composite Spectrum of BOSS Quasars Selected for Studies of the Lyman-alpha Forest

    David W. Harris et al.
    Comments: 24 pages, 19 figures, accepted by AJ
    Categories: astro-ph.GA, astro-ph.CO

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected more than 150,000 $2.1 \leq z \leq 3.5$ quasar spectra since 2009. Using this unprecedented sample, we create a composite spectrum in the rest-frame of 102,150 quasar spectra from 800 \AA\ to 3300 \AA\ at a signal-to-noise ratio close to 1000 per pixel ($\Delta v$ of 69 km~s$^{-1}$). Included in this analysis is a correction to account for flux calibration residuals in the BOSS spectrophotometry. We determine the spectral index as a function of redshift of the full sample, warp the composite spectrum to match the median spectral index, and compare the resulting spectrum to SDSS photometry used in target selection. The quasar composite matches the color of the quasar population to within 0.02 magnitudes in $g-r$, 0.03 magnitudes in $r-i$, and 0.01 magnitudes in $i-z$ over the redshift range $2.2<z<2.6$. The composite spectrum deviates from the imaging photometry by 0.05 magnitudes around $z = 2.7$, likely due to differences in target selection as the quasar colors become similar to the stellar locus at this redshift. Finally, we characterize the line features in the high signal-to-noise composite and identify nine faint lines not found in the previous composite spectrum from SDSS.

  4. arXiv:1602.02674 (Published 2016-02-08)

    SDSS-II Supernova Survey: An Analysis of the Largest Sample of Type Ia Supernovae and Correlations with Host-Galaxy Spectral Properties

    Rachel C. Wolf et al.

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopically-confirmed SNeIa discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6{\sigma} significance of a non-zero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.

  5. arXiv:1509.06529 (Published 2015-09-22)

    SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues

    Beth Reid et al.

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated MKSAMPLE, is released with this paper.

  6. arXiv:1501.00963 (Published 2015-01-05)

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Shadab Alam et al.

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 the Celestial sphere in five bands and obtained over five million astronomical spectra.

  7. arXiv:1307.7735 (Published 2013-07-29, updated 2014-01-17)

    The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment

    Christopher P. Ahn et al.
    Comments: 15 figures; 1 table. Accepted to ApJS. DR10 is available at http://www.sdss3.org/dr10 v3 fixed 3 diacritic markings in the arXiv HTML listing of the author names

    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514--1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.