Search ResultsShowing 1-2 of 2
-
arXiv:2411.12911 (Published 2024-11-19)
On large Sidon sets
A Sidon set $M$ is a subset of $\mathbb{F}_2^t$ such that the sum of four distinct elements of $M$ is never 0. The goal is to find Sidon sets of large size. In this note we show that the graphs of almost perfect nonlinear (APN) functions with high linearity can be used to construct large Sidon sets. Thanks to recently constructed APN functions $\mathbb{F}_2^8\to \mathbb{F}_2^8$ with high linearity, we can construct Sidon sets of size 192 in $\mathbb{F}_2^{15}$, where the largest sets so far had size 152. Using the inverse and the Dobbertin function also gives larger Sidon sets as previously known. Moreover, we improve the upper bound for the linearity of arbitrary APN functions.
-
arXiv:2304.07906 (Published 2023-04-16)
Sidon sets, sum-free sets and linear codes
Finding the maximum size of a Sidon set in $\mathbb{F}_2^t$ is of research interest for more than 40 years. In order to tackle this problem we recall a one-to-one correspondence between sum-free Sidon sets and linear codes with minimum distance greater or equal 5. Our main contribution about codes is a new non-existence result for linear codes with minimum distance 5 based on a sharpening of the Johnson bound. This gives, on the Sidon set side, an improvement of the general upper bound for the maximum size of a Sidon set. Additionally, we characterise maximal Sidon sets, that are those Sidon sets which can not be extended by adding elements without loosing the Sidon property, up to dimension 6 and give all possible sizes for dimension 7 and 8 determined by computer calculations.