arXiv Analytics

Sign in

Search ResultsShowing 1-19 of 19

Sort by
  1. arXiv:2404.10486 (Published 2024-04-16)

    Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry

    Gaia Collaboration et al.

    Gravitational waves from black-hole merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 \pm 0.82 M\odot BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way.

  2. arXiv:2310.06551 (Published 2023-10-10)

    Gaia Focused Product Release: Sources from Service Interface Function image analysis -- Half a million new sources in omega Centauri

    Gaia Collaboration et al.

    Gaia's readout window strategy is challenged by very dense fields in the sky. Therefore, in addition to standard Gaia observations, full Sky Mapper (SM) images were recorded for nine selected regions in the sky. A new software pipeline exploits these Service Interface Function (SIF) images of crowded fields (CFs), making use of the availability of the full two-dimensional (2D) information. This new pipeline produced half a million additional Gaia sources in the region of the omega Centauri ($\omega$ Cen) cluster, which are published with this Focused Product Release. We discuss the dedicated SIF CF data reduction pipeline, validate its data products, and introduce their Gaia archive table. Our aim is to improve the completeness of the {\it Gaia} source inventory in a very dense region in the sky, $\omega$ Cen. An adapted version of {\it Gaia}'s Source Detection and Image Parameter Determination software located sources in the 2D SIF CF images. We validated the results by comparing them to the public {\it Gaia} DR3 catalogue and external Hubble Space Telescope data. With this Focused Product Release, 526\,587 new sources have been added to the {\it Gaia} catalogue in $\omega$ Cen. Apart from positions and brightnesses, the additional catalogue contains parallaxes and proper motions, but no meaningful colour information. While SIF CF source parameters generally have a lower precision than nominal {\it Gaia} sources, in the cluster centre they increase the depth of the combined catalogue by three magnitudes and improve the source density by a factor of ten. This first SIF CF data publication already adds great value to the {\it Gaia} catalogue. It demonstrates what to expect for the fourth {\it Gaia} catalogue, which will contain additional sources for all nine SIF CF regions.

  3. arXiv:2310.06051 (Published 2023-10-09)

    Gaia Focused Product Release: Radial velocity time series of long-period variables

    Gaia Collaboration et al.

    The third Gaia Data Release (DR3) provided photometric time series of more than 2 million long-period variable (LPV) candidates. Anticipating the publication of full radial-velocity (RV) in DR4, this Focused Product Release (FPR) provides RV time series for a selection of LPVs with high-quality observations. We describe the production and content of the Gaia catalog of LPV RV time series, and the methods used to compute variability parameters published in the Gaia FPR. Starting from the DR3 LPVs catalog, we applied filters to construct a sample of sources with high-quality RV measurements. We modeled their RV and photometric time series to derive their periods and amplitudes, and further refined the sample by requiring compatibility between the RV period and at least one of the $G$, $G_{\rm BP}$, or $G_{\rm RP}$ photometric periods. The catalog includes RV time series and variability parameters for 9\,614 sources in the magnitude range $6\lesssim G/{\rm mag}\lesssim 14$, including a flagged top-quality subsample of 6\,093 stars whose RV periods are fully compatible with the values derived from the $G$, $G_{\rm BP}$, and $G_{\rm RP}$ photometric time series. The RV time series contain a mean of 24 measurements per source taken unevenly over a duration of about three years. We identify the great most sources (88%) as genuine LPVs, with about half of them showing a pulsation period and the other half displaying a long secondary period. The remaining 12% consists of candidate ellipsoidal binaries. Quality checks against RVs available in the literature show excellent agreement. We provide illustrative examples and cautionary remarks. The publication of RV time series for almost 10\,000 LPVs constitutes, by far, the largest such database available to date in the literature. The availability of simultaneous photometric measurements gives a unique added value to the Gaia catalog (abridged)

  4. arXiv:2307.05666 (Published 2023-07-11)

    JASMINE: Near-Infrared Astrometry and Time Series Photometry Science

    Daisuke Kawata et al.

    Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) is a planned M-class science space mission by the Institute of Space and Astronautical Science, the Japan Aerospace Exploration Agency. JASMINE has two main science goals. One is Galactic archaeology with Galactic Center Survey, which aims to reveal the Milky Way's central core structure and formation history from Gaia-level (~25 $\mu$as) astrometry in the Near-Infrared (NIR) Hw-band (1.0-1.6 $\mu$m). The other is the Exoplanet Survey, which aims to discover transiting Earth-like exoplanets in the habitable zone from the NIR time-series photometry of M dwarfs, when the Galactic center is not accessible. We introduce the mission, review many science objectives and present the instrument concept. JASMINE will be the first dedicated NIR astrometry space mission and provide precise astrometric information of the stars in the Galactic center, taking advantage of the significantly lower extinction in the NIR band. The precise astrometry is obtained by taking many short-exposure images. Hence, the JASMINE Galactic center survey data will be valuable for studies of exoplanet transits, asteroseismology, variable stars and microlensing studies, including discovery of (intermediate mass) black holes. We highlight a swath of such potential science, and also describe synergies with other missions.

  5. arXiv:2209.04210 (Published 2022-09-09)

    Combining Hipparcos and Gaia data for the study of binaries: the BINARYS tool

    A. Leclerc et al.

    Orbital motion in binary and planetary systems is the main source of precise stellar and planetary mass measurements, and joint analysis of data from multiple observational methods can both lift degeneracies and improve precision. We set out to measure the masses of individual stars in binary systems using all the information brought by the Hipparcos and Gaia absolute astrometric missions. We present BINARYS, a tool which uses the Hipparcos and Gaia absolute astrometric data and combines it with relative astrometry and/or radial velocity measurements to determine the orbit of a binary system. It rigorously combines the Hipparcos and Gaia data (here EDR3), and it can use the Hipparcos Transit Data as needed for binaries where Hipparcos detect significant flux from the secondary component. It also support the case where Gaia resolved the system, giving an astrometric solution for both components. We determine model-independent individual masses for the first time for three systems: the two mature binaries Gl~494 ($M_1=0.584 \pm 0.003 M_{\odot}$ and $M_2=87 \pm 1 M_{\textrm{Jup}}$) and HIP~88745 ($M_1=0.96 \pm 0.02 M_{\odot}$ and $M_2= 0.60^{+ 0.02 }_{- 0.01 } M_{\odot}$), and the younger AB Dor member GJ~2060 ($M_1=0.60 ^{+ 0.06}_{- 0.05} M_{\odot}$ and $M_2=0.45 ^{+ 0.06}_{- 0.05}M_{\odot}$). The latter provides a rare test of evolutionary model predictions at young ages in the low stellar-mass range and sets a lower age limit of 100~Myr for the moving group.

  6. arXiv:2206.06075 (Published 2022-06-13)

    Gaia Data Release 3: Pulsations in main sequence OBAF-type stars

    Gaia Collaboration et al.

    The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators M >= 1.3 Msun) of spectral types O, B, A, or F, known as beta Cep, slowly pulsating B (SPB), delta Sct, and gamma Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the vsini data were taken from the Gaia DR3 esphs tables. We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period-luminosity relation for delta Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. Finally, we demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of delta Sct stars.

  7. arXiv:2206.05870 (Published 2022-06-13)

    Gaia Data Release 3: A Golden Sample of Astrophysical Parameters

    Gaia Collaboration et al.
    Comments: 35 pages, (incl 6 pages references, acknowledgements, affiliations), 37 figures, A&A accepted

    Gaia Data Release 3 (DR3) provides a wealth of new data products for the astronomical community to exploit, including astrophysical parameters for a half billion stars. In this work we demonstrate the high quality of these data products and illustrate their use in different astrophysical contexts. We query the astrophysical parameter tables along with other tables in Gaia DR3 to derive the samples of the stars of interest. We validate our results by using the Gaia catalogue itself and by comparison with external data. We have produced six homogeneous samples of stars with high quality astrophysical parameters across the HR diagram for the community to exploit. We first focus on three samples that span a large parameter space: young massive disk stars (~3M), FGKM spectral type stars (~3M), and UCDs (~20K). We provide these sources along with additional information (either a flag or complementary parameters) as tables that are made available in the Gaia archive. We furthermore identify 15740 bone fide carbon stars, 5863 solar-analogues, and provide the first homogeneous set of stellar parameters of the Spectro Photometric Standard Stars. We use a subset of the OBA sample to illustrate its usefulness to analyse the Milky Way rotation curve. We then use the properties of the FGKM stars to analyse known exoplanet systems. We also analyse the ages of some unseen UCD-companions to the FGKM stars. We additionally predict the colours of the Sun in various passbands (Gaia, 2MASS, WISE) using the solar-analogue sample.

  8. arXiv:2206.05595 (Published 2022-06-11)

    Gaia Data Release 3: Stellar multiplicity, a teaser for the hidden treasure

    Gaia Collaboration et al.
    Comments: 60 pages, 60 figures. Accepted for publication in Astronomy & Astrophysics (2022-06-09). The catalogue of binary masses is available for download from the ESA Gaia DR3 Archive and will be available from the CDS/VizieR service

    The Gaia DR3 Catalogue contains for the first time about eight hundred thousand solutions with either orbital elements or trend parameters for astrometric, spectroscopic and eclipsing binaries, and combinations of them. This paper aims to illustrate the huge potential of this large non-single star catalogue. Using the orbital solutions together with models of the binaries, a catalogue of tens of thousands of stellar masses, or lower limits, partly together with consistent flux ratios, has been built. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained and a comparison with other catalogues is performed. Illustrative applications are proposed for binaries across the H-R diagram. The binarity is studied in the RGB/AGB and a search for genuine SB1 among long-period variables is performed. The discovery of new EL CVn systems illustrates the potential of combining variability and binarity catalogues. Potential compact object companions are presented, mainly white dwarf companions or double degenerates, but one candidate neutron star is also presented. Towards the bottom of the main sequence, the orbits of previously-suspected binary ultracool dwarfs are determined and new candidate binaries are discovered. The long awaited contribution of Gaia to the analysis of the substellar regime shows the brown dwarf desert around solar-type stars using true, rather than minimum, masses, and provides new important constraints on the occurrence rates of substellar companions to M dwarfs. Several dozen new exoplanets are proposed, including two with validated orbital solutions and one super-Jupiter orbiting a white dwarf, all being candidates requiring confirmation. Beside binarity, higher order multiple systems are also found.

  9. arXiv:2206.05534 (Published 2022-06-11)

    Gaia Data Release 3: Chemical cartography of the Milky Way

    Gaia Collaboration et al.

    Gaia DR3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the RVS and parametrised by the GSP-spec module. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc -- seen as phase space correlations -- and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [alpha/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several alpha, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [alpha/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day (abridged).

  10. arXiv:2204.02719 (Published 2022-04-06)

    A study of the F-giant star $θ$ Scorpii A: a post-merger rapid rotator?

    Fiona Lewis, Jeremy Bailey, Daniel V. Cotton, Ian D. Howarth, Lucyna Kedziora-Chudczer, Floor van Leeuwen

    We report high-precision observations of the linear polarization of the F1$\,$III star $\theta$ Scorpii. The polarization has a wavelength dependence of the form expected for a rapid rotator, but with an amplitude several times larger than seen in otherwise similar main-sequence stars. This confirms the expectation that lower-gravity stars should have stronger rotational-polarization signatures as a consequence of the density dependence of the ratio of scattering to absorption opacities. By modelling the polarization, together with additional observational constraints (incorporating a revised analysis of Hipparcos astrometry, which clarifies the system's binary status), we determine a set of precise stellar parameters, including a rotation rate $\omega\, (= \Omega/\Omega_{\rm c})\ge 0.94$, polar gravity $\log{g_p} = 2.091 ^{+0.042}_{-0.039}$ (dex cgs), mass $3.10 ^{+0.37}_{-0.32}$ solar masses, and luminosity $\log(L/Lsun) =3.149^{+0.041}_{-0.028}$. These values are incompatible with evolutionary models of single rotating stars, with the star rotating too rapidly for its evolutionary stage, and being undermassive for its luminosity. We conclude that $\theta$ Sco A is most probably the product of a binary merger.

  11. arXiv:2012.02061 (Published 2020-12-03)

    Gaia Early Data Release 3: The Gaia Catalogue of Nearby Stars

    Gaia Collaboration et al.
    Comments: 45 Pages, 39 figures in main part and 18 in appendix, tables on CDS
    Categories: astro-ph.SR, astro-ph.GA

    We produce a clean and well-characterised catalogue of objects within 100\,pc of the Sun from the \G\ Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use. The selection of objects within 100\,pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100\,pc is included in the catalogue. We have produced a catalogue of \NFINAL\ objects that we estimate contains at least 92\% of stars of stellar type M9 within 100\,pc of the Sun. We estimate that 9\% of the stars in this catalogue probably lie outside 100\,pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of \G\ Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10\,pc of the Sun.

  12. arXiv:1911.09705 (Published 2019-11-21)

    NGTS clusters survey. I. Rotation in the young benchmark open cluster Blanco 1

    Edward Gillen et al.
    Comments: 19 pages, 14 figures, 2 tables, accepted for publication in MNRAS
    Categories: astro-ph.SR

    We determine rotation periods for 127 stars in the ~115 Myr old Blanco 1 open cluster using ~200 days of photometric monitoring with the Next Generation Transit Survey (NGTS). These stars span F5-M3 spectral types (1.2 $\gtrsim M \gtrsim$ 0.3 M$_{\odot}$) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalised autocorrelation (G-ACF) and Lomb-Scargle (LS) periodograms, and find that GPs and G-ACF are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ~2 to 10 days, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ~100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly-aged Pleiades: the single star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ~100 Myr.

  13. arXiv:1901.08020 (Published 2019-01-23)

    The distance, rotation, and physical parameters of zeta Pup

    Ian D. Howarth, Floor van Leeuwen

    We scrutinize the Hipparcos parallax for the bright O supergiant zeta Pup, and confirm that the implied distance of 332+/-11pc appears to be reliable. We then review the implications for the star's physical parameters, and the consequences for the interpretation of P(phot), the 1.78-d photometric period. The equatorial rotation period is <3.7d (with 95% confidence), ruling out a proposed ~5.1d value. If the photometric period is the rotation period then i, the inclination of the rotation axis to the line of sight, is 33.2+/-1.8 degrees. The inferred mass, radius, and luminosity are securely established to be less than canonical values for the spectral type, and are not in agreement with single-star evolution models. The runaway status, rapid rotation, and anomalous physical properties are all indicative of an evolutionary history involving binary (or multiple-star) interaction. We perform simple starspot modelling to show that the low axial inclination required if P(rot) = 1.78d has testable spectroscopic consequences, which have not been identified in existing time series. If P(phot) is directly related to drivers of systematic, high-velocity stellar-wind variability (`discrete absorption components') in zeta Pup, antisolar differential rotation is required. Model line profiles calculated on that basis are at variance with observations.

  14. arXiv:1804.09378 (Published 2018-04-25)

    Gaia Data Release 2: Observational Hertzsprung-Russell diagrams

    Gaia Collaboration et al.
    Comments: Accepted for publication by A&A to be published in the Gaia Data Release 2 special issue
    Categories: astro-ph.SR, astro-ph.GA

    We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.

  15. arXiv:1710.08924 (Published 2017-10-24)

    The fast transient sky with Gaia

    Thomas Wevers et al.

    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.

  16. arXiv:1705.00688 (Published 2017-05-01)

    Gaia Data Release 1. Testing the parallaxes with local Cepheids and RR Lyrae stars

    Gaia Collaboration et al.
    Comments: 29 pages, 25 figures. Accepted for publication by A&A
    Categories: astro-ph.SR, astro-ph.GA

    Parallaxes for 331 classical Cepheids, 31 Type II Cepheids and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, that involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity ($PL$), period-Wesenheit ($PW$) relations for classical and Type II Cepheids and infrared $PL$, $PL$-metallicity ($PLZ$) and optical luminosity-metallicity ($M_V$-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. The new relations were computed using multi-band ($V,I,J,K_{\mathrm{s}},W_{1}$) photometry and spectroscopic metal abundances available in the literature, and applying three alternative approaches: (i) by linear least squares fitting the absolute magnitudes inferred from direct transformation of the TGAS parallaxes, (ii) by adopting astrometric-based luminosities, and (iii) using a Bayesian fitting approach. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent first Gaia-calibrated relations and form a "work-in-progress" milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia's Data Release 2 (DR2) in 2018.

  17. arXiv:1703.01131 (Published 2017-03-03)

    Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects

    Gaia Collaboration et al.
    Comments: Accepted for publication by A&A. 21 pages main text plus 46 pages appendices. 34 figures main text, 38 figures appendices. 8 table in main text, 19 tables in appendices
    Categories: astro-ph.SR

    Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs.

  18. arXiv:1702.03295 (Published 2017-02-10)

    Gaia Data Release 1: The variability processing & analysis and its application to the south ecliptic pole region

    L. Eyer et al.
    Comments: 40 pages, 46 figures. Submitted to A&A
    Categories: astro-ph.IM, astro-ph.SR

    The ESA Gaia mission provides a unique time-domain survey for more than one billion sources brighter than G=20.7 mag. Gaia offers the unprecedented opportunity to study variability phenomena in the Universe thanks to multi-epoch G-magnitude photometry in addition to astrometry, blue and red spectro-photometry, and spectroscopy. Within the Gaia Consortium, Coordination Unit 7 has the responsibility to detect variable objects, classify them, derive characteristic parameters for specific variability classes, and provide global descriptions of variable phenomena. We describe the variability processing and analysis that we plan to apply to the successive data releases, and we present its application to the G-band photometry results of the first 14 months of Gaia operations that comprises 28 days of Ecliptic Pole Scanning Law and 13 months of Nominal Scanning Law. Out of the 694 million, all-sky, sources that have calibrated G-band photometry in this first stage of the mission, about 2.3 million sources that have at least 20 observations are located within 38 degrees from the South Ecliptic Pole. We detect about 14% of them as variable candidates, among which the automated classification identified 9347 Cepheid and RR Lyrae candidates. Additional visual inspections and selection criteria led to the publication of 3194 Cepheid and RR Lyrae stars, described in Clementini et al. (2016). Under the restrictive conditions for DR1, the completenesses of Cepheids and RR Lyrae stars are estimated at 67% and 58%, respectively, numbers that will significantly increase with subsequent Gaia data releases. Data processing within the Gaia Consortium is iterative, the quality of the data and the results being improved at each iteration. The results presented in this article show a glimpse of the exceptional harvest that is to be expected from the Gaia mission for variability phenomena. [abridged]

  19. arXiv:1301.0890 (Published 2013-01-05)

    The Hipparcos parallax for Polaris

    Floor van Leeuwen
    Comments: 3 pages, 6 figures, Accepted for publication by A&A
    Categories: astro-ph.SR

    This letter follows a recent claim that the Hipparcos parallax for Polaris could be too small by 2.5 mas. It examines in detail the Hipparcos epoch astrometric data for Polaris, as well as the viability of other observations that were put forward to support a larger parallax. The Hipparcos determination of the Polaris parallax is shown to be sufficiently robust to fully exclude a significantly larger parallax, and there is no observational support from other observations, such as a supposed presence of a cluster, either.