{ "id": "quant-ph/9912032", "version": "v1", "published": "1999-12-07T17:34:59.000Z", "updated": "1999-12-07T17:34:59.000Z", "title": "Functional inversion for potentials in quantum mechanics", "authors": [ "Richard L. Hall" ], "comment": "14 pages, 2 figures", "journal": "Phys. Lett. A265, 28-34 (2000)", "doi": "10.1016/S0375-9601(99)00872-5", "categories": [ "quant-ph", "math-ph", "math.MP" ], "abstract": "Let E = F(v) be the ground-state eigenvalue of the Schroedinger Hamiltonian H = -Delta + vf(x), where the potential shape f(x) is symmetric and monotone increasing for x > 0, and the coupling parameter v is positive. If the 'kinetic potential' bar{f}(s) associated with f(x) is defined by the transformation: bar{f}(s) = F'(v), s = F(v)-vF'(v),then f can be reconstructed from F by the sequence: f^{[n+1]} = bar{f} o bar{f}^{[n]^{-1}} o f^{[n]}. Convergence is proved for special classes of potential shape; for other test cases it is demonstrated numerically. The seed potential shape f^{[0]} need not be 'close' to the limit f.", "revisions": [ { "version": "v1", "updated": "1999-12-07T17:34:59.000Z" } ], "analyses": { "keywords": [ "quantum mechanics", "functional inversion", "schroedinger hamiltonian", "ground-state eigenvalue", "kinetic potential" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }