{ "id": "quant-ph/9904011", "version": "v3", "published": "1999-04-02T17:24:45.000Z", "updated": "1999-11-15T18:27:52.000Z", "title": "Holonomic Quantum Computation", "authors": [ "Paolo Zanardi", "Mario Rasetti" ], "comment": "Presentation improved, accepted by Phys. Lett. A, 5 pages LaTeX, no figures", "journal": "Phys.Lett. A264 (1999) 94-99", "doi": "10.1016/S0375-9601(99)00803-8", "categories": [ "quant-ph", "hep-th" ], "abstract": "We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a $n$-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold $\\cal M$. The point of $\\cal M$ represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control $\\cal M$ induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in $\\cal M.$", "revisions": [ { "version": "v3", "updated": "1999-11-15T18:27:52.000Z" } ], "analyses": { "keywords": [ "holonomic quantum computation", "induce non trivial unitary transformations", "computational space", "fold degenerate eigenspace", "universal quantum computation" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "inspire": 497769 } } }