{ "id": "quant-ph/9503013", "version": "v1", "published": "1995-03-09T17:58:58.000Z", "updated": "1995-03-09T17:58:58.000Z", "title": "On the Global Existence of Bohmian Mechanics", "authors": [ "K. Berndl", "D. Dürr", "S. Goldstein", "G. Peruzzi", "N. Zanghì" ], "comment": "35 pages, LaTex", "journal": "Commun.Math.Phys. 173 (1995) 647-674", "doi": "10.1007/BF02101660", "categories": [ "quant-ph" ], "abstract": "We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\\\"odinger Hamiltonian.", "revisions": [ { "version": "v1", "updated": "1995-03-09T17:58:58.000Z" } ], "analyses": { "keywords": [ "bohmian mechanics", "global existence", "ordinary differential equation", "conditions necessary", "particle motion" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "LaTeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "inspire": 382955 } } }