{ "id": "quant-ph/0612122", "version": "v2", "published": "2006-12-14T19:36:14.000Z", "updated": "2007-02-08T20:19:23.000Z", "title": "A q-Oscillator with 'Accidental' Degeneracy of Energy Levels", "authors": [ "A. M. Gavrilik", "A. P. Rebesh" ], "comment": "12 pages, 7 figures; v.2 misprints corrected, two references added, to appear in Mod.Phys.Lett.A", "journal": "Mod.Phys.Lett.A22:949-960,2007", "doi": "10.1142/S0217732307022827", "categories": [ "quant-ph", "cond-mat.stat-mech", "hep-th", "math-ph", "math.MP", "nucl-th" ], "abstract": "We study main features of the exotic case of q-deformed oscillators (so-called Tamm-Dancoff cutoff oscillator) and find some special properties: (i) degeneracy of the energy levels E_{n_1} = E_{n_1+1}, n_1\\ge 1, at the {\\em real value} q=\\sqrt{\\frac{n_1}{n_1+2}} of deformation parameter, as well as the occurrence of other degeneracies E_{n_1} = E_{n_1+k}, for k \\ge 2, at the corresponding values of q which depend on both n_1 and k; (ii) the position and momentum operators X and P {\\em commute on the state} |m> if q is fixed as q=\\frac{m}{m+1}, that implies unusual uncertainty relation; (iii) two commuting copies of the creation, annihilation, and number operators of this q-oscillator generate the corresponding q-deformation of the {\\em non-simple} Lie algebra su(2)\\oplus u(1) whose nontrivial q-deformed commutation relation is: [ J_+, J_- ] = 2 J_0 q^{2J_3-1} where J_0\\equiv \\frac12 (N_1-N_2) and J_3\\equiv \\frac12 (N_1+N_2).", "revisions": [ { "version": "v2", "updated": "2007-02-08T20:19:23.000Z" } ], "analyses": { "subjects": [ "03.65.Fd", "05.30.Pr", "02.20.Uw" ], "keywords": [ "energy levels", "degeneracy", "implies unusual uncertainty relation", "accidental", "tamm-dancoff cutoff oscillator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "inspire": 734884 } } }