{ "id": "quant-ph/0605137", "version": "v1", "published": "2006-05-16T07:07:25.000Z", "updated": "2006-05-16T07:07:25.000Z", "title": "Minimum uncertainty measurements of angle and angular momentum", "authors": [ "Z. Hradil", "J. Rehacek", "Z. Bouchal", "R. Celechovsky", "L. L. Sanchez-Soto" ], "comment": "4 pages, two eps color figures. Submitted for publication", "journal": "Phys. Rev. Lett. 97, 243601 (2006)", "doi": "10.1103/PhysRevLett.97.243601", "categories": [ "quant-ph" ], "abstract": "The uncertainty relations for angle and angular momentum are revisited. We use the exponential of the angle instead of the angle itself and adopt dispersion as a natural measure of resolution. We find states that minimize the uncertainty product under the constraint of a given uncertainty in angle or in angular momentum. These states are described in terms of Mathieu wave functions and may be approximated by a von Mises distribution, which is the closest analogous of the Gaussian on the unit circle. We report experimental results using beam optics that confirm our predictions.", "revisions": [ { "version": "v1", "updated": "2006-05-16T07:07:25.000Z" } ], "analyses": { "keywords": [ "angular momentum", "minimum uncertainty measurements", "mathieu wave functions", "von mises distribution", "report experimental results" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }