{ "id": "quant-ph/0503052", "version": "v2", "published": "2005-03-04T18:40:56.000Z", "updated": "2005-10-18T14:06:47.000Z", "title": "Minimum orbit dimension for local unitary action on n-qubit pure states", "authors": [ "David W. Lyons", "Scott N. Walck" ], "comment": "19 pages", "journal": "J. Math. Phys. 46(10):102106, 2005", "doi": "10.1063/1.2048327", "categories": [ "quant-ph", "math-ph", "math.MP" ], "abstract": "The group of local unitary transformations partitions the space of n-qubit quantum states into orbits, each of which is a differentiable manifold of some dimension. We prove that all orbits of the n-qubit quantum state space have dimension greater than or equal to 3n/2 for n even and greater than or equal to (3n + 1)/2 for n odd. This lower bound on orbit dimension is sharp, since n-qubit states composed of products of singlets achieve these lowest orbit dimensions.", "revisions": [ { "version": "v2", "updated": "2005-10-18T14:06:47.000Z" } ], "analyses": { "keywords": [ "local unitary action", "minimum orbit dimension", "n-qubit pure states", "local unitary transformations partitions", "n-qubit quantum state space" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "J. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }