{ "id": "quant-ph/0406162", "version": "v1", "published": "2004-06-22T17:10:58.000Z", "updated": "2004-06-22T17:10:58.000Z", "title": "A new inequality for the von Neumann entropy", "authors": [ "Noah Linden", "Andreas Winter" ], "comment": "8 pages, 1 eps figure", "journal": "Commun Math Phys, vol 259, pp 129-138 (2005).", "doi": "10.1007/s00220-005-1361-2", "categories": [ "quant-ph" ], "abstract": "Strong subadditivity of von Neumann entropy, proved in 1973 by Lieb and Ruskai, is a cornerstone of quantum coding theory. All other known inequalities for entropies of quantum systems may be derived from it. Here we prove a new inequality for the von Neumann entropy which we prove is independent of strong subadditivity: it is an inequality which is true for any four party quantum state, provided that it satisfies three linear relations (constraints) on the entropies of certain reduced states.", "revisions": [ { "version": "v1", "updated": "2004-06-22T17:10:58.000Z" } ], "analyses": { "keywords": [ "von neumann entropy", "inequality", "strong subadditivity", "party quantum state", "quantum coding theory" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }