{ "id": "quant-ph/0401083", "version": "v1", "published": "2004-01-14T21:26:38.000Z", "updated": "2004-01-14T21:26:38.000Z", "title": "The quantum query complexity of the hidden subgroup problem is polynomial", "authors": [ "Mark Ettinger", "Peter Hoyer", "Emanuel Knill" ], "comment": "To appear in Information Processing Letters (IPL)", "categories": [ "quant-ph" ], "abstract": "We present a quantum algorithm which identifies with certainty a hidden subgroup of an arbitrary finite group G in only a polynomial (in log |G|) number of calls to the oracle. This is exponentially better than the best classical algorithm. However our quantum algorithm requires exponential time, as in the classical case. Our algorithm utilizes a new technique for constructing error-free algorithms for non-decision problems on quantum computers.", "revisions": [ { "version": "v1", "updated": "2004-01-14T21:26:38.000Z" } ], "analyses": { "keywords": [ "quantum query complexity", "hidden subgroup problem", "polynomial", "quantum algorithm", "arbitrary finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004quant.ph..1083E" } } }