{ "id": "quant-ph/0209113", "version": "v2", "published": "2002-09-20T18:22:22.000Z", "updated": "2002-12-04T20:23:38.000Z", "title": "Diameters of Homogeneous Spaces", "authors": [ "Michael Freedman", "Alexei Kitaev", "Jacob Lurie" ], "categories": [ "quant-ph" ], "abstract": "Let G be a compact connected Lie group with trivial center. Using the action of G on its Lie algebra, we define an operator norm | |_{G} which induces a bi-invariant metric d_G(x,y)=|Ad(yx^{-1})|_{G} on G. We prove the existence of a constant \\beta \\approx .12 (independent of G) such that for any closed subgroup H \\subsetneq G, the diameter of the quotient G/H (in the induced metric) is \\geq \\beta.", "revisions": [ { "version": "v2", "updated": "2002-12-04T20:23:38.000Z" } ], "analyses": { "keywords": [ "homogeneous spaces", "compact connected lie group", "trivial center", "lie algebra", "operator norm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002quant.ph..9113F" } } }