{ "id": "quant-ph/0208190", "version": "v1", "published": "2002-08-30T10:06:12.000Z", "updated": "2002-08-30T10:06:12.000Z", "title": "Cartan Calculus via Pauli Matrices", "authors": [ "D. Mauro" ], "comment": "30+1 pages, 1 figure", "journal": "Int.J.Mod.Phys. A18 (2003) 5231-5260", "doi": "10.1142/S0217751X03015982", "categories": [ "quant-ph", "hep-th", "math-ph", "math.MP" ], "abstract": "In this paper we will provide a new operatorial counterpart of the path-integral formalism of classical mechanics developed in recent years. We call it new because the Jacobi fields and forms will be realized via finite dimensional matrices. As a byproduct of this we will prove that all the operations of the Cartan calculus, such as the exterior derivative, the interior contraction with a vector field, the Lie derivative and so on, can be realized by means of suitable tensor products of Pauli and identity matrices.", "revisions": [ { "version": "v1", "updated": "2002-08-30T10:06:12.000Z" } ], "analyses": { "keywords": [ "cartan calculus", "pauli matrices", "finite dimensional matrices", "operatorial counterpart", "identity matrices" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 1, "language": "en", "license": "arXiv", "status": "editable", "inspire": 594348 } } }