{ "id": "quant-ph/0012111", "version": "v1", "published": "2000-12-20T16:20:53.000Z", "updated": "2000-12-20T16:20:53.000Z", "title": "Quantum error-correcting codes associated with graphs", "authors": [ "D. Schlingemann", "R. F. Werner" ], "comment": "8 pages revtex, 5 figures", "doi": "10.1103/PhysRevA.65.012308", "categories": [ "quant-ph", "cs.IT", "math-ph", "math.IT", "math.MP" ], "abstract": "We present a construction scheme for quantum error correcting codes. The basic ingredients are a graph and a finite abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification of the 1-error correcting property of fivefold codes in any dimension. As new examples we construct a large class of codes saturating the singleton bound, as well as a tenfold code detecting 3 errors.", "revisions": [ { "version": "v1", "updated": "2000-12-20T16:20:53.000Z" } ], "analyses": { "keywords": [ "quantum error-correcting codes", "quantum error correcting codes", "finite abelian group", "basic ingredients", "tenfold code" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. A" }, "note": { "typesetting": "RevTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }