{ "id": "quant-ph/0010104", "version": "v2", "published": "2000-10-30T11:09:19.000Z", "updated": "2000-10-31T17:00:15.000Z", "title": "Decomposition of pure states of a quantum register", "authors": [ "Ioannis Raptis", "Roman R. Zapatrin" ], "comment": "RevTeX, 3 pages, no figures, summary added", "categories": [ "quant-ph", "math.RA" ], "abstract": "Using the leading vector method, we show that any vector $h\\in(C^2)^{\\otimes l}$ can be decomposed as a sum of at most (and at least in the generic case) $2^l-l$ product vectors using local bitwise unitary transformations. The method is based on representing the vectors by chains of appropriate simplicial complex. This generalizes the Scmidt decomposition of pure states of a 2-bit register to registers of arbitrary length $l$.", "revisions": [ { "version": "v2", "updated": "2000-10-31T17:00:15.000Z" } ], "analyses": { "keywords": [ "pure states", "quantum register", "appropriate simplicial complex", "local bitwise unitary transformations", "scmidt decomposition" ], "note": { "typesetting": "RevTeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000quant.ph.10104R" } } }