{ "id": "quant-ph/0006068", "version": "v3", "published": "2000-06-14T17:15:00.000Z", "updated": "2000-12-21T15:02:02.000Z", "title": "Geometry of entangled states", "authors": [ "Marek Kus", "Karol Zyczkowski" ], "comment": "16 latex pages, 4 figures in epsf, minor corrections, references updated, to appear in Phys. Rev. A", "journal": "Phys. Rev A 63 032307-13 (2001)", "doi": "10.1103/PhysRevA.63.032307", "categories": [ "quant-ph" ], "abstract": "Geometric properties of the set of quantum entangled states are investigated. We propose an explicit method to compute the dimension of local orbits for any mixed state of the general K x M problem and characterize the set of effectively different states (which cannot be related by local transformations). Thus we generalize earlier results obtained for the simplest 2 x 2 system, which lead to a stratification of the 6D set of N=4 pure states. We define the concept of absolutely separable states, for which all globally equivalent states are separable.", "revisions": [ { "version": "v3", "updated": "2000-12-21T15:02:02.000Z" } ], "analyses": { "keywords": [ "pure states", "6d set", "quantum entangled states", "explicit method", "generalize earlier results" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. A" }, "note": { "typesetting": "LaTeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }