{ "id": "quant-ph/0005074", "version": "v1", "published": "2000-05-17T14:09:09.000Z", "updated": "2000-05-17T14:09:09.000Z", "title": "Variational Approach to Hydrogen Atom in Uniform Magnetic Field of Arbitrary Strength", "authors": [ "M. Bachmann", "H. Kleinert", "A. Pelster" ], "comment": "Author Information under this http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at this http://www.physik.fu-berlin.de/~kleinert/307", "journal": "Physical Review A 62, 52509/1-21 (2000)", "doi": "10.1103/PhysRevA.62.052509", "categories": [ "quant-ph" ], "abstract": "Extending the Feynman-Kleinert variational approach, we calculate the temperature-dependent effective classical potential governing the quantum statistics of a hydrogen atom in a uniform magnetic at all temperatures. The zero-temperature limit yields the binding energy of the electron which is quite accurate for all magnetic field strengths and exhibits, in particular, the correct logarithmic growth at large fields.", "revisions": [ { "version": "v1", "updated": "2000-05-17T14:09:09.000Z" } ], "analyses": { "keywords": [ "uniform magnetic field", "hydrogen atom", "arbitrary strength", "effective classical potential governing", "correct logarithmic growth" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. A" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }