{ "id": "quant-ph/0003114", "version": "v1", "published": "2000-03-24T07:57:33.000Z", "updated": "2000-03-24T07:57:33.000Z", "title": "Phase shift operator and cyclic evolution in finite dimensional Hilbert space", "authors": [ "Ramandeep S. Johal" ], "comment": "Revtex, 3 pages", "categories": [ "quant-ph" ], "abstract": "We address the problem of phase shift operator acting as time evolution operator in Pegg-Barnett formalism. It is argued that standard shift operator is inconsistent with the behaviour of the state vector under cyclic evolution. We consider a generally deformed oscillator algebra at q-root of unity, as it yields the same Pegg-Barnett operator and show that shift operator meets our requirement.", "revisions": [ { "version": "v1", "updated": "2000-03-24T07:57:33.000Z" } ], "analyses": { "keywords": [ "finite dimensional hilbert space", "cyclic evolution", "shift operator meets", "standard shift operator", "time evolution operator" ], "note": { "typesetting": "RevTeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000quant.ph..3114J" } } }