{ "id": "physics/9911024", "version": "v2", "published": "1999-11-12T16:30:06.000Z", "updated": "2000-08-03T09:28:59.000Z", "title": "Quasilinear theory of the 2D Euler equation", "authors": [ "Pierre-Henri Chavanis" ], "comment": "4 pages", "journal": "Phys. Rev. Lett. 84, 5512-5515 (2000)", "doi": "10.1103/PhysRevLett.84.5512", "categories": [ "physics.flu-dyn", "cond-mat.stat-mech", "nlin.CD" ], "abstract": "We develop a quasilinear theory of the 2D Euler equation and derive an integro-differential equation for the evolution of the coarse-grained vorticity. This equation respects all the invariance properties of the Euler equation and conserves angular momentum in a circular domain and linear impulse in a channel. We show under which hypothesis we can derive a H-theorem for the Fermi-Dirac entropy and make the connection with statistical theories of 2D turbulence.", "revisions": [ { "version": "v2", "updated": "2000-08-03T09:28:59.000Z" } ], "analyses": { "keywords": [ "2d euler equation", "quasilinear theory", "conserves angular momentum", "integro-differential equation", "fermi-dirac entropy" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }