{ "id": "physics/0608266", "version": "v4", "published": "2006-08-28T08:45:50.000Z", "updated": "2007-03-01T07:14:49.000Z", "title": "Clustering Analysis of Periodic Point Vortices with the $L$ Function", "authors": [ "Makoto Umeki" ], "comment": "4 pages, 12 figures, to appear in JPSJ", "journal": "JPSJ Vol. 76 No. 4 (2007) p. 043401", "doi": "10.1143/JPSJ.76.043401", "categories": [ "physics.flu-dyn" ], "abstract": "A motion of point vortices with periodic boundary conditions is studied by using Weierstrass zeta functions. Scattering and recoupling of a vortex pair by a third vortex becomes remarkable when the vortex density is large. Clustering of vortices with various initial conditions is quantitated by the $L$ function used in point process theory in spatial ecology. It is shown that clustering persists if it is initially clustered like an infinite row or a checkered pattern.", "revisions": [ { "version": "v4", "updated": "2007-03-01T07:14:49.000Z" } ], "analyses": { "keywords": [ "periodic point vortices", "clustering analysis", "periodic boundary conditions", "weierstrass zeta functions", "point process theory" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of the Physical Society of Japan", "year": 2007, "month": "Apr", "volume": 76, "number": 4, "pages": 43401 }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007JPSJ...76d3401U" } } }