{ "id": "physics/0511075", "version": "v2", "published": "2005-11-09T14:21:55.000Z", "updated": "2006-07-04T08:32:25.000Z", "title": "Analytic Study of Shell Models of Turbulence", "authors": [ "Peter Constantin", "Boris Levant", "Edriss S. Titi" ], "doi": "10.1016/j.physd.2006.05.015", "categories": [ "physics.flu-dyn" ], "abstract": "In this paper we study analytically the viscous `sabra' shell model of energy turbulent cascade. We prove the global regularity of solutions and show that the shell model has finitely many asymptotic degrees of freedom, specifically: a finite dimensional global attractor and globally invariant inertial manifolds. Moreover, we establish the existence of exponentially decaying energy dissipation range for the sufficiently smooth forcing.", "revisions": [ { "version": "v2", "updated": "2006-07-04T08:32:25.000Z" } ], "analyses": { "keywords": [ "shell model", "analytic study", "finite dimensional global attractor", "turbulence", "globally invariant inertial manifolds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }