{ "id": "math/9912216", "version": "v1", "published": "1999-12-28T15:12:54.000Z", "updated": "1999-12-28T15:12:54.000Z", "title": "A global theory of algebras of generalized functions", "authors": [ "Michael Grosser", "Michael Kunzinger", "Roland Steinbauer", "James Vickers" ], "comment": "24 pages, LaTeX", "journal": "Advances in Math. 166 (2002) 50-72", "categories": [ "math.FA", "math-ph", "math.MP" ], "abstract": "We present a geometric approach to defining an algebra $\\hat{\\mathcal G}(M)$ (the Colombeau algebra) of generalized functions on a smooth manifold $M$ containing the space ${\\mathcal D}'(M)$ of distributions on $M$. Based on differential calculus in convenient vector spaces we achieve an intrinsic construction of $\\hat{\\mathcal G}(M)$. $\\hat{\\mathcal G}(M)$ is a{\\em differential} algebra, its elements possessing Lie derivatives with respect to arbitrary smooth vector fields. Moreover, we construct a canonical linear embedding of ${\\mathcal D}'(M)$ into $\\hat{\\mathcal G}(M)$ that renders ${\\mathcal C}^\\infty (M)$ a faithful subalgebra of $\\hat{\\mathcal G}(M)$. Finally, it is shown that this embedding commutes with Lie derivatives. Thus $\\hat{\\mathcal G}(M)$ retains all the distinguishing properties of the local theory in a global context.", "revisions": [ { "version": "v1", "updated": "1999-12-28T15:12:54.000Z" } ], "analyses": { "subjects": [ "46F30", "46T30" ], "keywords": [ "generalized functions", "global theory", "arbitrary smooth vector fields", "convenient vector spaces", "elements possessing lie derivatives" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "LaTeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....12216G" } } }