{ "id": "math/9912106", "version": "v1", "published": "1999-12-13T23:18:41.000Z", "updated": "1999-12-13T23:18:41.000Z", "title": "Algebraic structure of the loop space Bockstein spectral sequence", "authors": [ "Jonathan A. Scott" ], "comment": "12 pages", "categories": [ "math.AT", "math.KT" ], "abstract": "Let X be a finite, n-dimensional, r-connected CW complex. We prove the following theorem: If p \\geq n/r is an odd prime, then the loop space homology Bockstein spectral sequence modulo p is a spectral sequence of universal enveloping algebras over differential graded Lie algebras.", "revisions": [ { "version": "v1", "updated": "1999-12-13T23:18:41.000Z" } ], "analyses": { "subjects": [ "55P35", "16S30" ], "keywords": [ "loop space bockstein spectral sequence", "algebraic structure", "bockstein spectral sequence modulo", "loop space homology bockstein spectral", "space homology bockstein spectral sequence" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....12106S" } } }