{ "id": "math/9912051", "version": "v2", "published": "1999-12-06T22:22:19.000Z", "updated": "2000-02-29T03:10:07.000Z", "title": "Criteria for σ-ampleness", "authors": [ "Dennis S. Keeler" ], "comment": "16 pages, LaTeX2e, to appear in J. of the AMS, minor errors corrected (esp. in 1.4 and 3.1), proofs simplified", "journal": "J. Amer. Math. Soc. 13 (2000), no. 3, 517-532.", "doi": "10.1090/S0894-0347-00-00334-9", "categories": [ "math.AG", "math.RA" ], "abstract": "In the noncommutative geometry of Artin, Van den Bergh, and others, the twisted homogeneous coordinate ring is one of the basic constructions. Such a ring is defined by a $\\sigma$-ample divisor, where $\\sigma$ is an automorphism of a projective scheme X. Many open questions regarding $\\sigma$-ample divisors have remained. We derive a relatively simple necessary and sufficient condition for a divisor on X to be $\\sigma$-ample. As a consequence, we show right and left $\\sigma$-ampleness are equivalent and any associated noncommutative homogeneous coordinate ring must be noetherian and have finite, integral GK-dimension. We also characterize which automorphisms $\\sigma$ yield a $\\sigma$-ample divisor.", "revisions": [ { "version": "v2", "updated": "2000-02-29T03:10:07.000Z" } ], "analyses": { "subjects": [ "14A22", "14F17", "14J50", "16P90", "16S38", "16W50" ], "keywords": [ "ample divisor", "noncommutative homogeneous coordinate ring", "van den bergh", "relatively simple necessary", "basic constructions" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "LaTeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....12051K" } } }