{ "id": "math/9911188", "version": "v1", "published": "1999-11-23T21:26:17.000Z", "updated": "1999-11-23T21:26:17.000Z", "title": "On $C^r-$closing for flows on 2-manifolds", "authors": [ "Carlos Gutierrez" ], "comment": "7 pages, 1 figure", "doi": "10.1088/0951-7715/13/6/301", "categories": [ "math.DS" ], "abstract": "For some full measure subset B of the set of iet's (i.e. interval exchange transformations) the following is satisfied: Let X be a $C^r$, $1\\le r\\le \\infty$, vector field, with finitely many singularities, on a compact orientable surface M. Given a nontrivial recurrent point $p\\in M$ of X, the holonomy map around p is semi-conjugate to an iet $E :[0,1) \\to [0,1).$ If $E\\in B$ then there exists a $C^r$ vector field Y, arbitrarily close to X, in the $C^r-$topology, such that Y has a closed trajectory passing through p.", "revisions": [ { "version": "v1", "updated": "1999-11-23T21:26:17.000Z" } ], "analyses": { "subjects": [ "58F10", "58F11", "58F18", "58F25" ], "keywords": [ "vector field", "full measure subset", "interval exchange transformations", "nontrivial recurrent point", "compact orientable surface" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }