{ "id": "math/9911122", "version": "v2", "published": "1999-11-17T02:00:57.000Z", "updated": "1999-11-30T19:12:43.000Z", "title": "A new combinatorial characterization of the minimal cardinality of a subset of R which is not of first category", "authors": [ "Apoloniusz Tyszka" ], "comment": "4 pages, LaTeX 209, a new theorem added (see Abstract and Note on p.2)", "categories": [ "math.LO" ], "abstract": "Let M denote the ideal of first category subsets of R. We prove that min{card X: X \\subseteq R, X \\not\\in M} is the smallest cardinality of a family S \\subseteq {0,1}^\\omega with the property that for each f: \\omega -> \\bigcup_{n \\in \\omega}{0,1}^n there exists a sequence {a_n}_{n \\in \\omega} belonging to S such that for infinitely many i \\in \\omega the infinite sequence {a_{i+n}}_{n \\in \\omega} extends the finite sequence f(i). We inform that S \\subseteq {0,1}^\\omega is not of first category if and only if for each f: \\omega -> \\bigcup_{n \\in \\omega}{0,1}^n there exists a sequence {a_n}_{n \\in \\omega} belonging to S such that for infinitely many i \\in \\omega the infinite sequence {a_{i+n}}_{n \\in \\omega} extends the finite sequence f(i).", "revisions": [ { "version": "v2", "updated": "1999-11-30T19:12:43.000Z" } ], "analyses": { "subjects": [ "03E05", "54A25", "26A03" ], "keywords": [ "combinatorial characterization", "minimal cardinality", "infinite sequence", "first category subsets", "smallest cardinality" ], "note": { "typesetting": "LaTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....11122T" } } }