{ "id": "math/9910012", "version": "v1", "published": "1999-10-04T12:40:27.000Z", "updated": "1999-10-04T12:40:27.000Z", "title": "A connected component of the moduli space of surfaces of general type with $p_g=0$", "authors": [ "M. Mendes Lopes", "R. Pardini" ], "comment": "LaTeX 2.09, 20 pages", "categories": [ "math.AG" ], "abstract": "Let S be a minimal surface of general type with $p_g(S)=0$ and such that the bicanonical map $\\phi:S\\to \\pp^{K^2_S}$ is a morphism: then the degree of $\\phi$ is at most 4 and if it is equal to 4 then $K^2_S\\le 6$. Here we prove that if $K^2_S=6$ and $\\deg \\phi=4$ then S is a so-called {\\em Burniat surface}. In addition we show that minimal surfaces with $p_g=0$, $K^2=6$ and bicanonical map of degree 4 form a 4-dimensional irreducible connected component of the moduli space of surfaces of general type.", "revisions": [ { "version": "v1", "updated": "1999-10-04T12:40:27.000Z" } ], "analyses": { "subjects": [ "14J29", "14J10" ], "keywords": [ "general type", "moduli space", "minimal surface", "bicanonical map", "burniat surface" ], "note": { "typesetting": "LaTeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math.....10012M" } } }