{ "id": "math/9909137", "version": "v1", "published": "1999-09-23T15:17:30.000Z", "updated": "1999-09-23T15:17:30.000Z", "title": "On codimension two subvarieties of P6", "authors": [ "Philippe Ellia", "Davide Franco" ], "comment": "23 pages (Latex)", "categories": [ "math.AG" ], "abstract": "We prove the following: (a) Let X be a smooth, codimension two subvariety of P6. If X lies on a hyperquintic or if deg(X)<74, then X is a complete intersection. (b) Let X be a smooth, subcanonical threefold in P5. If X lies on a hyperquartic, then X is a complete intersection.", "revisions": [ { "version": "v1", "updated": "1999-09-23T15:17:30.000Z" } ], "analyses": { "subjects": [ "14J60", "14J99" ], "keywords": [ "codimension", "subvariety", "complete intersection" ], "note": { "typesetting": "LaTeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......9137E" } } }