{ "id": "math/9909058", "version": "v1", "published": "1999-09-10T12:19:46.000Z", "updated": "1999-09-10T12:19:46.000Z", "title": "Geometric Representation Theory of Restricted Lie Algebras of Classical Type", "authors": [ "Ivan Mirkovic", "Dmitriy Rumynin" ], "categories": [ "math.RT", "math.AG" ], "abstract": "We modify the Hochschild $\\phi$-map to construct central extensions of a restricted Lie algebra. Such central extension gives rise to a group scheme which leads to a geometric construction of unrestricted representations. For a classical semisimple Lie algebra, we construct equivariant line bundles whose global sections afford representations with a nilpotent p-character.", "revisions": [ { "version": "v1", "updated": "1999-09-10T12:19:46.000Z" } ], "analyses": { "keywords": [ "restricted lie algebra", "geometric representation theory", "classical type", "construct equivariant line bundles", "global sections afford representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......9058M" } } }