{ "id": "math/9908019", "version": "v1", "published": "1999-08-05T05:13:29.000Z", "updated": "1999-08-05T05:13:29.000Z", "title": "Arithmetic Hodge structure and higher Abel-Jacobi maps", "authors": [ "Masanori Asakura" ], "comment": "Latex2e, 20pages", "categories": [ "math.AG" ], "abstract": "In this paper, we show some applications to algebraic cycles by using higher Abel-Jacobi maps which were defined in [the author: Motives and algebraic de Rham cohomology]. In particular, we prove that the Beilinson conjecture on algebraic cycles over number fields implies the Bloch conjecture on zero-cycles on surfaces. Moreover, we construct a zero-cycle on a product of curves whose Mumford invariant vanishes, but not higher Abel-Jacobi invariant.", "revisions": [ { "version": "v1", "updated": "1999-08-05T05:13:29.000Z" } ], "analyses": { "subjects": [ "14C30", "32S35" ], "keywords": [ "higher abel-jacobi maps", "arithmetic hodge structure", "algebraic cycles", "mumford invariant vanishes", "higher abel-jacobi invariant" ], "note": { "typesetting": "LaTeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......8019A" } } }