{ "id": "math/9907162", "version": "v1", "published": "1999-07-24T12:52:11.000Z", "updated": "1999-07-24T12:52:11.000Z", "title": "On imbedding of closed 2-dimensional disks into $R^2$", "authors": [ "Eugene Polulyakh" ], "comment": "LaTeX-2e document, 28 pages", "journal": "Methods of Func. An. and Topology - 1998 - N 2 - P. 76-94", "categories": [ "math.GT", "math.AT" ], "abstract": "Let $X$ be a topological space, $U$ -- opened subset of $X$. We will say that point $x \\in \\partial U$ is {\\it accessible} from $U$ if there exists continuous injective mapping $\\phi : I \\to \\Cl D$ such that $\\phi(1)=x$, $\\phi([0,1)) \\subset \\Int U$. We proove the next main theorem. The following conditions are neccesary and suffficient for a compact subset $D$ of $R^2$ with a nonempty interior $\\Int D$ to be homeomorphic to a closed 2-dimensional disk: 1) sets $\\Int D$ and $R^2 \\setminus D$ are connected; 2) any $x \\in \\partial D$ is accessible both from $\\Int D$ and from $R^2 \\setminus D$.", "revisions": [ { "version": "v1", "updated": "1999-07-24T12:52:11.000Z" } ], "analyses": { "subjects": [ "14E35", "57M50", "57N35" ], "keywords": [ "main theorem", "compact subset", "nonempty interior", "topological space", "suffficient" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......7162P" } } }