{ "id": "math/9906182", "version": "v1", "published": "1999-06-27T03:42:16.000Z", "updated": "1999-06-27T03:42:16.000Z", "title": "Lower bounds on volumes of hyperbolic Haken 3-manifolds", "authors": [ "Ian Agol" ], "comment": "20 pages, 15 figures", "categories": [ "math.GT" ], "abstract": "In this paper, we find lower bounds for volumes of hyperbolic 3-manifolds with various topological conditions. Let V_3 = 1.01494 denote the volume of a regular ideal simplex in hyperbolic 3-space. As a special case of the main theorem, if a hyperbolic manifold M contains an acylindrical surface S, then Vol(M)>= -2 V_3 chi(S). We also show that if beta_1(M)>= 2, then Vol(M)>= 4/5 V_3.", "revisions": [ { "version": "v1", "updated": "1999-06-27T03:42:16.000Z" } ], "analyses": { "subjects": [ "57M50" ], "keywords": [ "lower bounds", "hyperbolic haken", "regular ideal simplex", "hyperbolic manifold", "special case" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......6182A" } } }