{ "id": "math/9906123", "version": "v1", "published": "1999-06-18T12:57:37.000Z", "updated": "1999-06-18T12:57:37.000Z", "title": "Homotopy Groups of the Space of Curves on a Surface", "authors": [ "Vladimir Tchernov" ], "comment": "8 pages, 1 figure This paper will appear in Math. Scand. probably in Vol. 86, no. 1, 2000", "journal": "Math. Scand. 86 (2000), no. 1, 36--44.", "categories": [ "math.GT", "math.DG" ], "abstract": "We explicitly calculate the fundamental group of the space $\\mathcal F$ of all immersed closed curves on a surface $F$. It is shown that $\\pi_n(\\mathcal F)=0$, n>1 for $F\\neq S^2, RP^2$. It is also proved that $\\pi_2(\\mathcal F)=\\Z$, and $\\pi_n(\\mathcal F)=\\pi_n(S^2)\\oplus\\pi_{n+1}(S^2)$, n>2, for $F$ equal to $S^2$ or $RP^2$.", "revisions": [ { "version": "v1", "updated": "1999-06-18T12:57:37.000Z" } ], "analyses": { "subjects": [ "53C42", "57M99" ], "keywords": [ "homotopy groups", "fundamental group", "immersed closed curves" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......6123T" } } }