{ "id": "math/9905203", "version": "v1", "published": "1999-05-28T00:00:00.000Z", "updated": "1999-05-28T00:00:00.000Z", "title": "Embeddings from the point of view of immersion theory: Part II", "authors": [ "Thomas G. Goodwillie", "Michael Weiss" ], "comment": "16 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper4.abs.html", "journal": "Geom. Topol. 3 (1999), 103-118", "categories": [ "math.GT" ], "abstract": "Let M and N be smooth manifolds. For an open V of M let emb(V,N) be the space of embeddings from V to N. By results of Goodwillie and Goodwillie-Klein, the cofunctor V |--> emb(V,N) is analytic if dim(N)-dim(M) > 2. We deduce that its Taylor series converges to it. For details about the Taylor series, see Part I.", "revisions": [ { "version": "v1", "updated": "1999-05-28T00:00:00.000Z" } ], "analyses": { "subjects": [ "57R40", "57R42" ], "keywords": [ "immersion theory", "embeddings", "taylor series converges", "smooth manifolds", "goodwillie-klein" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }