{ "id": "math/9905156", "version": "v1", "published": "1999-05-25T19:31:25.000Z", "updated": "1999-05-25T19:31:25.000Z", "title": "A note on the localization of J-groups", "authors": [ "Mohammad Obiedat" ], "comment": "15 pages, Latex2e, to appear in Hiroshima Math. J., 2 (1999)", "categories": [ "math.AT", "math.KT" ], "abstract": "Let $\\widetilde{JO}(X)=\\widetilde{KO}(X)/TO(X)$ be the J-group of a connected finite CW complex X. We Obtain two computable formulas of $TO(X)_{(p)}$, the localization of $TO(X)$ at a prime p. Then we show how to use these two formulas of $TO(X)_{(p)}$ to find the J-orders of elements of $\\widetilde{KO}(CP^m)$, at least the 2 and 3 primary factors of the canonical generators of $\\widetilde{JO}(CP^m).$ Here $CP^m$ is the complex projective space.", "revisions": [ { "version": "v1", "updated": "1999-05-25T19:31:25.000Z" } ], "analyses": { "subjects": [ "55Q50", "55R50" ], "keywords": [ "localization", "connected finite cw complex", "complex projective space", "primary factors", "canonical generators" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......5156O" } } }