{ "id": "math/9905109", "version": "v1", "published": "1999-05-19T08:05:38.000Z", "updated": "1999-05-19T08:05:38.000Z", "title": "Universal Counting of Lattice Points in Polytopes", "authors": [ "Imre Bárány", "Jean-Michel Kantor" ], "categories": [ "math.CO", "math.AG" ], "abstract": "Given a lattice polytope $P$ (with underlying lattice $\\lo$), the universal counting function $\\uu_P(\\lo')=|P\\cap \\lo'|$ is defined on all lattices $\\lo'$ containing $\\lo$. Motivated by questions concerning lattice polytopes and the Ehrhart polynomial, we study the equation $\\uu_P=\\uu_Q$.", "revisions": [ { "version": "v1", "updated": "1999-05-19T08:05:38.000Z" } ], "analyses": { "keywords": [ "lattice points", "questions concerning lattice polytopes", "universal counting function", "ehrhart polynomial", "underlying lattice" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......5109B" } } }