{ "id": "math/9902003", "version": "v1", "published": "1999-02-01T11:12:14.000Z", "updated": "1999-02-01T11:12:14.000Z", "title": "The Mixed Hodge Structure on the Fundamental Group of a Punctured Riemann Surface", "authors": [ "Rainer H. Kaenders" ], "comment": "10 pages", "categories": [ "math.AG" ], "abstract": "Given a compact Riemann surface $\\bar{X}$ of genus $g$ and a point $q$ on $\\bar{X}$, we consider $X:=\\bar{X}\\setminus\\{q\\}$ with a basepoint $p\\in X$. The extension of mixed Hodge structures, given by the weights -1 and -2, of the mixed Hodge structure on the fundamental group (in the sense of Hain) is studied. We show that it naturally corresponds on the one hand to the element $(2g q-2 p-K)$ in $\\Pic^0(\\bar{X})$, where $K$ represents the canonical divisor, and on the other hand to the respective extension of $\\bar{X}$. Finally, we prove a pointed Torelli theorem for punctured Riemann surfaces.", "revisions": [ { "version": "v1", "updated": "1999-02-01T11:12:14.000Z" } ], "analyses": { "subjects": [ "14H40", "14H30", "14F35" ], "keywords": [ "mixed hodge structure", "punctured riemann surface", "fundamental group", "compact riemann surface", "pointed torelli theorem" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......2003K" } } }