{ "id": "math/9812160", "version": "v1", "published": "1998-12-30T16:25:57.000Z", "updated": "1998-12-30T16:25:57.000Z", "title": "Embeddings of Banach Spaces into Banach Lattices and the Gordon-Lewis Property", "authors": [ "Peter G. Casazza", "N. J. Nielsen" ], "comment": "32 pages, latex2e", "categories": [ "math.FA" ], "abstract": "In this paper we first show that if $X$ is a Banach space and $\\alpha$ is a left invariant crossnorm on $\\ell_\\infty\\otimes X$, then there is a Banach lattice $L$ and an isometric embedding $J$ of $X$ into $L$, so that $I\\otimes J$ becomes an isometry of $\\ell_\\infty\\otimes_\\alpha X$ onto $\\ell_\\infty\\otimes_m J(X)$. Here $I$ denotes the identity operator on $\\ell_\\infty$ and $\\ell_\\infty\\otimes_m J(X)$ the canonical lattice tensor product. This result is originally due to G. Pisier (unpublished), but our proof is different. We then use this to characterize the Gordon-Lewis property $\\GL$ in terms of embeddings into Banach lattices. Also other structures related to the $\\GL$ are investigated.", "revisions": [ { "version": "v1", "updated": "1998-12-30T16:25:57.000Z" } ], "analyses": { "subjects": [ "46B40", "46B42" ], "keywords": [ "banach lattice", "banach space", "gordon-lewis property", "left invariant crossnorm", "canonical lattice tensor product" ], "note": { "typesetting": "LaTeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....12160C" } } }