{ "id": "math/9812067", "version": "v3", "published": "1998-12-11T04:33:03.000Z", "updated": "2002-05-26T18:38:03.000Z", "title": "Injectivity radii of hyperbolic polyhedra", "authors": [ "Joseph D. Masters" ], "comment": "14 pages, 9 figures. Replaced with published version", "journal": "Pacific J. Math. 197 (2001), no. 2, 369--382", "categories": [ "math.GT", "math.GR" ], "abstract": "We define the injectivity radius of a Coxeter polyhedron in H^3 to be half the shortest translation length among hyperbolic/loxodromic elements in the orientation-preserving reflection group. We show that, for finite-volume polyhedra, this number is always less than 2.6339..., and for compact polyhedra it is always less than 2.1225... .", "revisions": [ { "version": "v3", "updated": "2002-05-26T18:38:03.000Z" } ], "analyses": { "subjects": [ "57M50", "20F55", "22E40" ], "keywords": [ "injectivity radius", "hyperbolic polyhedra", "shortest translation length", "coxeter polyhedron", "compact polyhedra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....12067M" } } }