{ "id": "math/9812051", "version": "v3", "published": "1998-12-08T22:02:38.000Z", "updated": "1999-02-22T19:37:09.000Z", "title": "Minimal number of singular fibers in a Lefschetz fibration", "authors": [ "Mustafa Korkmaz", "Burak Ozbagci" ], "comment": "6 pages, 2 figures, second version", "journal": "Proc. Amer. Math. Soc. 129 (2001), 1545-1549", "categories": [ "math.GT", "math.SG" ], "abstract": "There exists a (relatively minimal) genus g Lefschetz fibration with only one singular fiber over a closed (Riemann) surface of genus h iff g>2 and h>1. The singular fiber can be chosen to be reducible or irreducible. Other results are that every Dehn twist on a closed surface of genus at least three is a product of two commutators and no Dehn twist on any closed surface is equal to a single commutator.", "revisions": [ { "version": "v3", "updated": "1999-02-22T19:37:09.000Z" } ], "analyses": { "subjects": [ "57M99", "20F38" ], "keywords": [ "singular fiber", "lefschetz fibration", "minimal number", "dehn twist", "closed surface" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....12051K" } } }