{ "id": "math/9812024", "version": "v1", "published": "1998-12-03T14:09:53.000Z", "updated": "1998-12-03T14:09:53.000Z", "title": "A classification of centrally-symmetric and cyclic 12-vertex triangulations of $S^2 \\times S^2$", "authors": [ "G. Lassmann", "E. Sparla" ], "comment": "12 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "In this paper our main result states that there exist exactly three combinatorially distinct centrally-symmetric 12-vertex-triangulations of the product of two 2-spheres with a cyclic symmetry. We also compute the automorphism groups of the triangulations. These instances suggest that there is a triangulation of $S^2 \\times S^2$ with 11 vertices -- the minimum number of vertices required.", "revisions": [ { "version": "v1", "updated": "1998-12-03T14:09:53.000Z" } ], "analyses": { "subjects": [ "57Q15", "52B70" ], "keywords": [ "triangulation", "classification", "main result states", "minimum number", "automorphism groups" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....12024L" } } }